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1.  Introduction  
 
Physical properties of disordered semiconductors are a 

subject of intensive investigations because of their broad 
scale of applications in electronics, optoelectronics, solar 
techniques, etc. [1-9].   

In this article we deal with an explanation of two phe-
nomena in a field of the theory of disordered semiconduc-
tors. Their essence is still unclear. The first is the empirical 
Meyer-Neldel rule (MNR) and the second the non-
exponential relaxation. 

Even though the MNR has been discovered in 1937, 
there does not exist a generally accepted explanation of it 
up to now, in spite of there fact that the phenomenon is 
frequent. It is typical not only for non-crystalline semicon-
ductors (their electrical conductivity) but also for some 
diffusion processes, phase transitions, catalysis etc. The 
MNR phenomenon occurs also in modern electronics, e.g. 
in FET transistors and in CCD imagers. 

Similarly, as to the second phenomenon: the non-
exponential relaxation is still shrouded by mystery in case 
of disordered semiconductors (very often called “stretched 
exponential” relaxation).  

As far as it is related to the MNR in the interpretation 
of the electric conductivity of disordered semiconductors, 
we recall some experimental facts as follows.  

Semiconductors are characterized by the temperature 
dependence of their electrical conductivity. Most 
semiconductors exhibit an exponential temperature 
dependence of the conductivity, σ  
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where σo is a constant and W – activation energy [1-10]. If 
the logarithm of the conductivity σ is plotted on the 
ordinate against the reciprocal of the temperature T on the 

abscissa, a straight line is obtained whose slope one may 
calculate the activation energy, W. The extrapolated 
intercept of this line on the ordinate axis yields the value 
of the pre-exponential factor, σo.  

For many classes of materials, especially organic 
semi-insulators, chalcogenide glasses, amorphous 
silicon…experimental evidence suggest that a correlation 
exist between the activation energies and pre-exponential 
factors of the following form [11-28] 
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where b and σoo are constant. This relation can be written 
as  
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here b = 1/kTo. The relation (3) gives the dependence of 
pre-factor σo on the activation energy W and represents 
Meyer-Neldel empirical rule. Equation (3) is often 
refereed to as the MN rule or the compensation rule. 
Constant σoo is often called the Meyer-Nedel pre-
exponential factor and kTo the MN characteristic energy.  

For electric conductivity of upper mentioned group of 
substances it holds  
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This rule holds in disorder materials when W is varied 

by doping, by surface absorption, light soaking or by 
preparing films under different conditions. This rule has 
also been observed for liquid semiconductors and 
fullerens. The validity of the MN rule has also been 
reported in the case of chalcogenide glasses. In the case of 
these glasses this rule is observed by variation of W on 
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changing the composition of the glassy alloys in a specific 
glassy system. Electrical conductivity in dark is measured 
as a function of temperature for this purpose.  

In works [11, 13, 14, 18] the change of activation 
energy W was caused under influence of an electric field 
or a light. Up to now there is not the generally accepted 
theory explaining the MN rule satisfyingly.  

MNR has been observed not only with the electric 
conductivity but also with other processes such as: diffu-
sion, crystallization, catalysis, adsorption, luminescence 
etc.  

An attempt for explanation of MNR (normal MNR, 
inverse MNR, further MNR), based on the barrier-cluster 
model, has been published in [29-31]. The next informa-
tion about the barrier-cluster model can see in  [32-40]. A 
short description of existing models explaining MNR is in 
the review article [41]. 
 

1.1 Specific problems connected with the MNR 
 

In addition to the information introduced up to now on 
the MNR, we recall here also some specific empirical 
acquaitance with the MNR. First of all we notice devia-
tions from relations (2-4), observed at smallest activation 
energy values. In that region of activation energy there 
appears so called “the inverse MNR”. 

The standard MNR is characterized by the function 
lnσo(W) (2). This function is corresponds to a straight line 
with a positive slope. In some cases, a deviation from this 
behavior appears in an interval of low activation energies 
W. In that interval a minimum at Wm appears on the graph 
lnσo(W). The function lnσo(W) decreases with W in the 
interval 0 ≤ W < Wm. This decrease was named as the 
“inverse MNR” in the literature. Examples of this kind of 
dependences can be found in [41-47]. Published experi-
mental dependences of lnσo(W) showed a decrease in the 
interval 0 ≤ W < Wm. This decrease (for sufficiently low 
positive values of W) can be described approximately by a 
linear function  

 
ln σo = lnσoo – cW                                        (5) 

 
where the constant c is positive.  

If W >>Wm, the function lnσo(W) can be depicted as a 
straight line with a positive slope. This line corresponds to 
the standard MNR.  

As to an explanation of the inverse MNR is concerned 
one can meets some accesses (approaches) in [42-47]. 
Presently, there is no generally accepted theory explaining 
the inverse MNR.  

 A further open problem connected with the MNR lies 
in clarifying the so called “further MNR”. It consists in the 
explanation of experimentally observed correlation be-
tween the pre-exponential factor σoo - which appears in 
relation (6) - and the parameter ENM. The correlation was 
discovered and described by Shimakawa and Abdel-
Wahao  [21] with different chalcogenide glasses. They 
found the following correlation between 00σ  and EMN  

 

MNEqp .ln 00 +=σ                                    (6) 
 

Here p and q are constants. This relation between the 
Meyer-Neldel pre-factor σoo and Meyer-Neldel energy 
EMN  has become  known as "further MNR".  This problem 
was dealt with [48-57]. 

 
1.2  Problem of relaxation  
 
Another phenomenon - important and unclear until 

now - which will be treated in this paper is the non-
exponential relaxation in disordered semiconductors. 

Recently, non-exponential decay of excited states of 
condensed matter has attracted much attention [58-60]. For 
example, Leonelli and Brebner have investigated time-
resolved spectroscopy of the visible emission band in 
SrTiO3, and found that the fast emission decay involves 
monomolecular process while the slow decay process 
involves bi-molecular process [59]. Itoh and Wada have 
studied photoconductivity in anatase crystal (TiO2) 
induced by super-band-gap light excitation at 300 K, and 
found that the photocurrent decays nonexponentially and 
persists over 3000 seconds [60]. The time dependence can 
be partially fitted by a stretched exponential function: 
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where τ =1,7 ~ 3,6 sec and β = 0,21 ~ 0,25 depending on 
the excitation energy. However, the physics underlying the 
phenomena is not clear and no reliable theory has been 
constructed that explains the origin of the stretched 
exponential behavior [61-64].  

Below we will submit an explanation of connections 
between the MNR and the non-exponential (stretched-
exponential) relaxation in disordered semiconductors.   

 
 
2. An explanation of the Meyer-Neldel rule in   
    disordered semiconductors  
 
In this  paragraph we present possible explanation of 

the Meyer-Neldel rule in non-crystalline semiconductors, 
e. g. in chalcogenide glasses, or in amorphous silicon and 
so on. It is based on assumption that the physical processes 
in non-crystalline semiconductors can be explained in a 
frame of the barrier-cluster model. This model was 
described in author’s foregoing works.  

We assume that activation energy of a semiconductor 
influences recombination process of current carriers. Then 
we show than an increase of activation energy of a non-
crystalline semiconductor decreases probability of 
recombination of carriers. This process necessary 
influences equilibrium concentration of conduction 
electrons (carriers) and subsequently electric conductivity 
of the semiconductor. As a result we obtain the relation 
identical with that one representing empirical Meyer-
Neldel rule.  
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2.1  The barrier-cluster model  
 
The barrier-cluster model assumes that there are not 

energy levels of significant concentration in forbidden 
band of a non-crystalline semiconductor. The barrier-
cluster model assumes that there exist potential barriers in 
the non-crystalline semiconductor, which separate the 
certain microregions – clusters, and in this way, they 
hinder the transport of the carriers at the margin of the 
conduction or valence bands [32-40].  

The barriers have also an influence upon the optical 
absorption at the optical absorption edge. The optical 
absorption at low temperatures is usually accompanied 
with tunneling of the carriers through the potential barrier.  

 
2.2  Recombination 
 
A transition of an electron from conduction band to 

valence band in a non-crystalline semiconductor proceeds 
predominantly by production of phonons. The total energy 
of produced phonons will correspond to that one released 
in electron transition. Further we shall assume that in a 
substance under consideration dominates phonon 
production which average energy is ∆E. It means that 
phonon production of other phonons is negligible. At the 
transition of an electron from conduction band to valence 
band gained energy 2W is used in production of N phonons 
each of them has energy ∆E so that 2W = N∆E or  

 
N = 2W/∆E                    (8) 

 
Let w1 be probability of production one phonon which 

energy is equal to ∆E. Probability wNof production N 
phonons of equal energy due to the electron – lattice 
interaction will be  

 
wN = (w1)N                    (9) 

 
If we write down probability w1 as  

 
w1 = exp(-ε1)                      (10) 

 
where ε1 is a positive value, then probability wN one can 
write with respect to (9,10) as  
 

 wN = exp(-Nε1) = exp(-ε12W/∆E) = exp(-bW)  (11) 
 
where the constant b is given by  
 

b =  2 ε1/∆E                                  (12) 
 

Relation (11) gives at the same time the probability of 
recombination; it means the transition probability of an 
electron from conduction to valence band. That one is 
proportional to the probability of production N phonons 
and too proportional to the exp(-bW). With an increase of 
activation energy probability of recombination according 
to (11) exponentially decreases.  

 
 

2.3  Equilibrium concentration of conduction  
       electrons  
 
An equilibrium concentration n of conduction 

electrons in a semiconductor is result of two opposite 
processes: one is a process of generation and the other one 
is a process of recombination of carriers. In equilibrium 
(or steady) state it holds  

 
 (dn/dt)gen = (dn/dt)recom                          (13) 

A number of free electrons generated in a unit time is 
given as  

 
 (dn/dt)gen =  G =  C1exp(-W/kT)                  (14) 

 
where C1 is a constant.  

For a recombination process we suppose that the 
relation  

 
 (dn/dt) recom =  R = n.C2 exp(- bW)            (15) 

 
is valid. Here C2 is a constant. The number of 
recombinations in a unit of time is proportional to the 
number n of the electron – hole (e-h) pairs as well as to the 
probability (11) production N phonons at the electron 
transition.  

In equilibrium state it valid R = G, so that  
 
 C1 exp(-W/kT) = n.C2 exp(- bW)          (16) 
 

From that relation follows for equilibrium 
concentration n of free carriers 

 
n =  Coo exp(bW) exp(-W/kT)                      (17) 

 
where Coo is determined by the constants C1 and C2.  
 

2.4   Electric conductivity  
 
It is known that electric conductivity σ is proportional 

to n: σ ≈ n. If mobility of carriers is independend on 
activation energy W (or that dependence is negligible) one 
can write with respect to (17)  

 
σ = σoo.exp(bW) exp(-W/kT)                       (18) 

 
respectively 
 

σ =  σo(W) exp(-W/kT)                              (19) 
 
where σoo  is  a constant and   
 

σo(W) = σoo exp(bW)                                (20) 
 
If we put  
 

b = 1/kTo  = 1/EMN                                   (20b) 
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 the relation (18) takes the form which is identical with 
dependence (4) 
 

σ ≈ σoo exp(W/kTo) exp(-W/kT)                   (21) 
 
The relation (20) acquires the form 
 

σ o ≈ σ oo exp(W/kTo)                                   (22) 
 
which expresses the Meyer-Neldel rule (3).  

Remark: The relations (18, 19) which gives the 
MNR, can also be obtained in another way (as it will be 
shown at the end of the paper) than by using relations (14, 
15). These relations correspond to the single-molecular 
type of the recombination. Alternative relations – which 
will be introduced later - correspond to the bi-molecular 
recombination. The MNR will hold also in this case. This 
implies that the reasoning about the inverse MNR and 
further MNR will also be valid. 

 
 

3.  Inverse Meyer-Neldel rule    
 
3.1 Explanation of the inverse MNR based     
       on  the barrier-cluster model  
 
We propose that the phenomenon of the inverse MNR 

is closely connected with a recombination radius of carri-
ers in noncrystalline semiconductors. We interpret the 
recombination radius as follows: It is the maximal distance 
between carriers under which (at a given width 2W of 
forbidden gap) more or less localized particles e and h 
(electron-hole pair e-h) are still able to recombine in a 
disordered material. At larger distance of two particles e-h 
the recombination (at the same width 2W of forbidden 
gap) is impossible. Further we assume that the recombina-
tion radius in disordered semiconductors depends on the 
width 2W of the forbidden gap. Arguments for this as-
sumption will be discussed later.  

Our MNR model assumes (as before) that the carrier 
recombination is accompanied by emission of a series of 
monoenergetical phonons. The number N of emitted pho-
nons is proportional to the width 2W of forbidden gap,  

 
 N  ~ 2W  (23) 

 
Our further hypothesis says: there is a correlation be-

tween the number N of emitted phonons at the recombina-
tion and the recombination radius. In another words, if 
there are more phonons at the recombination, then an 
electron will have a higher chance to recombine with a 
hole at some larger distance. Otherwise the recombination 
will not be realized. 

Let the recombination distance R be proportional to 
the number N of phonons resulting from the recombination 
act (R ~ N). According to (23) N ~ 2W. This implies  

 
 R ~ W  (24) 

 

At low activation energy W, the recombination radius 
will be small. It restricts probability of recombination. As 
a consequence the effect of the inverse MNR takes place.  

The probability PR of the presence of a hole in the 
sphere of radius R in the centre of which an electron is 
present - and then the probability of their mutual recombi-
nation is proportional to R3 ;  PR ~ R3. With respect to 
relation (23,24), one obtains  

 
 PR ~ W 3  (25) 

 
The recombination probability will influence also the 

recombination radius and the quantity W 3.  
 
 

3.2  Revised relation for recombination  
        probability  
 
The result (25) necessitates a correction of relation 

(11), which gives recombination probability of e-h pair in 
the existing standard model. Relation (11) 

 
 wN ~ exp(-bW)    (26) 

 
has to be corrected in to the form  
 

 wN ~ PR.exp(-bW)  (27) 
 
and, with respect to (25) into the form  
 

 wN ~ W 3 exp(-bW)  (28) 
 
Relation (28) represents the improvement of relation (11).  
For the number n of carriers recombined during the unit 
time, one can write  
 

  (dn/dt) recom =  R = n.C3W 3exp(- bW)  (29) 
 
In the equilibrium state, it holds  
 

  (dn/dt)gen = (dn/dt)recom  (30) 
 
for all free electrons whose number generated during unit 
time is given as  
 

  (dn/dt)gen =  G =  C1exp(-W/kT) (31) 
 
where C1 is a constant. We obtain  
 

C1 exp(-W/kT) = n.C3 W 3 exp(- bW) (32) 
 

From this relation it ollows for equilibrium concentra-
tion n of free carriers that  
 

 n =  Coo W -3 exp(bW) exp(-W/kT)  (33) 
 

where Coo is determined by the constants C1 and C3.  
For conductivity σ ~ n, it is evidently valid that  
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 σ = σoo.W  -3.exp(bW) exp(-W/kT)  (34) 
 

One can write  
 
 σ o = σ oo W  -3

 exp(bW)          (35) 
 
or  

ln σo =  ln σoo + bW – 3 lnW              (36) 
 

This relation gives the dependence lnσo(W) in a wide 
interval of activation energies W, including low values of 
W. This is the generalization of relation (2) providing more 
complex view on the problem of the MNR.  

At high values of W, the term bW dominates; bW >> – 
3 lnW in relation (36), so approximately  

 
 
 
 ln σo =  ln σoo + bW  (37) 

 
This relation corresponds to the standard MNR.  
At sufficiently low values of the activation energy bW << 
– lnW.  In such a case, the relation  
 

 ln σo =  ln σoo – 3 lnW  (38) 
 
may approximately be accepted. Relation (38) that we 
have obtained corresponds well to the decrease of lnσo 
with the increase of the activation energy W in the interval 
where the inverse MNR take place.  
 
Remark: If one replaces the relation (36) by the relation R 
= cW + Ro, where Ro is a constant - the relation (36) will 
take the form 

 ln σo =  ln σoo + bW – 3ln(W+a) (39) 
 
One can see that for W→ + 0,  ( ) 3

0 000 aσ σ= . If   
3

00 1aσ >  then in accord with experiment 0ln 0σ > stays 
positive and finite. For W > 0 the course of the function 
(39) will be nearly similar to the function (36). 
 

 
Fig. 1  Electronic spectrum of chalcogenide glass 

 
 

4. Further Meyer-Neldel rule  
 
In the present paragraph, we intend to explain the  

“further MNR” for chacogenide glasses. The explanation, 
concerning a disorder semiconductor, is based on the bar-
rier-cluster model. The basic assumption of this model is 
that recombinant electron transitions from energies above 
the forbidden gap to energies in the valence band are ac-
companied with emitting a series of phonons (each with 
the same energy ∆E). The total energy of these phonons is 
equal to the width of the forbidden gap of the semiconduc-
tor. The number of the phonons emitted during the recom-
bination process is higher if one chooses a wider forbidden 
gap. The total probability of the multi-phonon emission 
decreases with the growth of the number of the phonons. 
Consequently, the recombination probability of carriers 
decreases with growth of the width of the forbidden gap. 
The decrease in the recombination probability causes an 
increase of the equilibrium concentration of free electrons 
in the conduction band which means an increase of the 
electrical conduction. In this sense it is essentially possible 
to interpret the electrical conductivity in the agreement 
with the NMR. 

The “further MNR” takes into account the fact that – 
if we explain it from the viewpoint of our barrier-cluster 
model – the phonons produced with the energy ∆E during 
the recombinsation process are intensely absorbed by free 
electrons with energies corresponding to a low-mobility 
sub-band inside the conduction band (i.e. in an interval 
where potential-energy barriers have to be considered). 

Owing to the presence of the barriers, the electrons 
undergo a strong interaction with the phonons and this 
implies a considerable absorption of the phonons of the 
“recombination” origin. In the transport of electrons in the 
lower part of the conduction band, we have to respect a 
tunnelling through the barriers. Owing to the absorption of 
the “recombinant” phonons, some free electrons go over to 
higher energy levels, and this is connected with an in-
crease of the tunnelling probability. This causes a remark-
able enhancement of the mobility of electrons in this sub-
band. We present a mathematical expression for the elec-
trical conductivity of the disordered semiconductor in 
agreement with the empirical relation based on the “further 
MNR”. 

 
4.1  Barrier-cluster model of non-crystalline  
       semiconductors 
The barrier-cluster model assumes that an amorphous 

semiconductor consists of microscopic regions separated 
from each other by potential barriers [32-40]. The micro-
regions are interpreted as clusters in this model.  The mod-
el is based on the idea that some low-dimensional covalent 
systems, e.g. chalcogenides, could form special configura-
tions (similar to fullerenes or nanotubes) – clusters.  Clus-
ter structures of chalcogenide glasses, and their physical 
properties, were studied in [8-9, 65-67] using computer’s 
simulations. The concept of clusters enable to explain 
some important properties of chalcogenide glasses, such as 
the absence the EPR signal, as well as X- ray examination 
results. 
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The potential barriers impede (restrict) the transition 
of low energy conduction electrons from one region to 
another (Fig. 1, 2). Such electrons behave in regions be-
tween barriers in a similar way as electrons do in a crystal. 
The potential barriers can be drawn inside the conduction 
(or valence) band of an amorphous material as objects 
separating individual localized energy states at the edge of 
the band.  

The electron levels between barriers, due to the small 
dimensions of the inter-barrier regions, exhibit a distinct 
discrete character. At the lower margin of the conduction 
band, a sub-band with carriers of low average mobility 
(µ1) is created. The states with energies above the peaks of 
barriers are delocalized. They create a sub-band with a 
high average mobility (µ2). Thus, it is clear that the activa-
tion energy of an amorphous material should not be de-
fined by one value. At higher temperatures, it is deter-
mined substantially by the height of the potential barriers. 
At lower temperatures, however, the transport in a region 
below the peaks of barriers may dominate, and the corres-
ponding activation energy will obviously be lower than its 
hight temperature value. Quite a similar situation occurs at 
the edge of the valence band. 

 
4.2  Optical  absorption 
 
The potential barriers influence significantly the optical 

absorption at the optical absorption edge. We have to consid-
er a strong electron-phonon interaction, which implies that 
an electron can also take the energy of a phonon at the opti-
cal transition and thus, the total energy taken by an electron 
equals the sum of the photon and phonon energies. This 
enables to explain the existence of exponential tails at the 
optical absorption, which penetrate deeply inside the for-
bidden band of the semiconductor [29-40]. Another impor-
tant factor - as far as the influence of barriers on optical 
phenomena is concerned - is that the absorption of light in 
the region of the absorption edge at low temperatures is 
usually connected with a tunneling of carriers through 
potential barriers. Thus, the absorption process is influ-
enced by the barriers.  

Employing this idea we can explain successfully not 
only the creation of exponential tails at the optical absorp-
tion edge, but also their temperature dependences both at 
high and at low temperatures [32-40]. 

The optical absorption in most crystalline solids is 
characterized by a sharp edge of the absorption band. The 
absorption band near its border in the case of non-
crystalline semiconductors is smeared out and creates a tail 
extending deeply into the forbidden band. As a rule the 
profile of the tail  is exponential. The exponential tails at 
high enough  temperatures often fit Urbach´s formula. The 
slope of the tails changes with a temperature decrease.  At 
lower temperatures, the slope of the tails ceases to vary 
with a temperature decrease. However, a certain parallel 
shift towards lower absorption is observed. 

 
4.3  The  exponential tail 
 
High temperature range: The starting point in the 

following discussion is an assumption that the potential 
barriers in non-crystalline semiconductors under proper 
conditions enable to explain the absorption of light with 
phonons participating in the energy exchange [32-40]. We 
assume that an electron in the optical transition receives 
not only the energy hf of a photon but also the phonon 
energy  Wphon (Fig. 2).  Thus, the whole received energy is 

 
 hf  + Wphon  (40) 

 
where Wphon is the energy acquired from a phonon “field”. 
The quantity hf is given by the wavelength of the 
radiation, while Wphon has a statistical character. 
In principle, a photon can be absorbed only when its ener-
gy is sufficient to cause a transition of the electron into the 
conduction band. However it should be taken into account, 
that optical transitions on the energy levels lying just near 
the tops of barriers will dominate at higher temperatures. 
In this case, the probability of transition within a single 
localized region is small. The levels in adjacent micro 
regions offer more possibilities of combination. However, 
one has to consider the tunneling of electrons through the 
barriers.  
 

 
 

Fig. 2. Electronic spectrum of a non-crystalline semicon-
ductor  and  optical  transition at some higher (left) and  
                          lower (right) temperature 

 
Under these assumptions, the transitions to levels just 
below the barrier peaks will be more probable for two 
reasons. The transitions to lower levels are less significant 
since the a small tunneling probability. The second reason 
consists in the strong electron-phonon interaction in the 
presence of the barriers. The number of electrons that can 
acquire advantageous energy from a phonon field depends 
on the temperature. The number of electron transitions 
during an irradiaton of the material by „low energy“ pho-
tons (and thus, also the coefficient of optical absorption α) 
is directly proportional to the phonon concentration cor-
responding to the minimum energy needed for the transi-
tion. For the absorption coefficient, we can writte [30] 
 

α ~exp(hf/2kT)                      (41) 
 
or, for a given (constant) temperature 
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ln α  ~  hf + const               (42) 
 

This is a mathematical expression of an exponential 
tail of the optical absorption [1,2]. However, the slope of 
the tails is also temperature dependent. Formula is of the 
same kind as Urbach's formula.  

Low temperature range: At low temperatures, only 
photons with sufficient energy can be absorbed in the 
material. There are not enough phonons with sufficiently 
high energies to realize the high-temperature mechanism. 
The optical transition of an electron can be virtually 
divided into two parts [32-40]. The first (Fig. 2) is a 
vertical transition onto an energy level inside its own 
localized region; the second represents a (horizontal) 
tunneling transition onto a level in an adjacent inter-barrier 
region. Thus, absorption of a photon in a low-temperature 
mechanism is connected with the tunneling of the electron 
through a potential barrier. The barrier model explains in 
this case the temperature dependent parallel shift of the 
exponential tails [30]. 

According to [32-40] the probability p of a single 
tunneling of an electron across a parabolic barrier is propor-
tional to the expression 
 

 p ~ exp [−A (2W + Wo − (hf  + CT))]      (43) 
p ~ exp (A (hf + CT)) 

 
A similar relation will be valid for the optical absorption 
coefficient α, so that  
 

α ~ exp (A (hf + CT)) 
 

In this way, not only the existence of exponential tails 
of α at low temperatures can be clarified, but also their 
parallel temperature shift [32-40]. The barrier-cluster 
model allows to elucidate also other optical phenom-
ena,   including   electroabsorption, photo-conductivity and 
photoluminesence, without an a priori consideration of 
exponential tails of the state density inside the forbidden 
gap of the disordered semiconductor. It allows also to 
explain the MNR. 

The most important phenomena observed in non-
crystalline semiconductors can be explained on the basis 
of the barrier-cluster model. This model allows 
explanation not only of a number of important optical and 
electrical features of chalcogenide glasses, but also the 
results of X-ray structure measurements. The closed-
cluster structure can explain the absence of an ESR signal 
in the case of chalcogenide glasses. This model provides a 
new explanation for the density of states within the 
forbidden band of a semiconductor and explains why the 
attempts at identification of gap-states by various optical 
and other methods fail. 

 
 
5.  YM model of „further MNR“ 
 
Soon after the discovery of the „further MNR“ by 

Shimakawa and Abdel-Wahao [21] in different systems of 

chalcogenide glasses, similar strong correlation between 
the values of σoo and EMN, namely 

 
 MNEqp .ln 00 +=σ   (44) 

 
was observed by Wang and Chen [48] for C6o films at 
different stages of the growth process and at different gate 
voltages of the field effect transistor. It has also been re-
ported in a-Si:H produced by different techniques [49].  
 

 
Fig. 3  The parabolic potential   barrier 

 
 

Recently, Mehta, Kumar and co-workers reported the 
"further MNR" in various chalcogenide glasses paying 
heed to thermally activated photoconductíon, high-field 
conduction, and non-isotermal crystallization [50-54]. The 
correlation between 00σ  and EMN is explained in [55-57] 
by the multiple excitations associated with the phonon 
energy ∆E, as described above. 

To explain the puzzle about the „further MNR“ Yelon 
and Movaghar proposed a YM model [55]. According to 
this model, the MNR arises naturally for kinetic processes 
in which ∆E is the energy of a kinetic barrier and for 
which ∆E is large compared to the energies of the excita-
tions which contribute to the activation, as well as to kT. 
Yelon and co-workers suggest that optical phonons are the 
source of the excitatíon energy in such a process, showing 
the "further MNR". It is assumed that many phonons are 
involved in the trapping and de-trapping of electrons, 
either by a cascade or multi-phonon process. Yelon and 
Movaghar explained the MNR with an entropy term, 
which may change the pre-factor by many orders of mag-
nitude. It applies equally well to crystalline and amorph-
ous materials. 

Emin [68] presented an extensive calculation of the 
optical – phonon assisted transition rates for a non-
adiabatic hopping of electrons in a solid. He calculated the 
jump rates, associated d.c. conductivity, a.c. conductivity, 
and electric-field dependence of the d.c. conductivity, for a 
crystal in the strong-coupling small-polaron regime. He 
found that these transport properties manifest a qualitative-
ly different behavior in the case when the temperature is 
above or well below the optical-phonon temperature. In 
the low-temperature regime, the energy-conserving 
processes, which involve the absorption of the minimum 
amount of vibrational energy, provide the dominant con-
tribution to the thermally activated jump rates. At suffi-
ciently high temperatures, the multi-phonon processes 
dominate the transitíon rate; the high-temperature jump 
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rates are also activated, although with a different activa-
tion energy than that which characterizes the low-
temperature regime. In the complementary weak-coupling 
regime, the jump rate is characterized by the dominance of 
those processes which involve the absorption or emission 
of the minimum number of phonons consistent with the 
requirements of energy conservation. Once again two 
distinct temperature domains manifest themselves: a low-
temperature, thermally activated, regime and a high-
temperature, non-activated, regime. Emin calculated the 
hopping rates due to multi-phonon effects as a lattíce-
relaxation phase shift. As can easily be seen, the MN ener-
gy depends on ln S, whereas, the hopping rate depends 
upon exp(-S). 
Emin´s calculatins give the prediction that 
 

 
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

MN

o

E
h

r
ν

σ expln 00
  (45) 

 
Here it has been assumed that r is a constant. Yelon 

and Movaghar have found r = -9.8 and hνo = 78.2 meV for 
the best fit of Eq. (45) to the data of Ref.  [55-57]. They 
observed that the deviation of the data from this fit is very 
similar to that of Eq. (6), which also has two adjustable 
parameters. 

 
6.  Futher MNR from the point of view of the    
     barrier-cluster model 
 
6.1   Basic idea    
 
The phenomenon for which the “further MNR” ap-

plies is caused – we believe – by the strong absorption of 
the phonons (that we characterize by the same value of 
energy) by the free electrons having energies in a low-
mobility sub-band of the conduction band. The transport 
of electrons in this sub-band is via the tunneling across 
potential-energy barriers (Figs. 1, 2). The absorption of 
phonons by these electrons implies that electrons jump on 
higher energy levels at which the tunneling probability is 
enhanced. This means a remarkable enhancement of the 
mobility of the electrons. Having in mind disordered semi-
conductors, we will present a mathematical derivation of 
their electrical conductivity. As we will show, our final 
result for the electrical conductivity agrees well with the 
empirical “further MNR” (6). 

 
NOTE: The free electrons in the low-mobility sub-

band interact strongly with phonons right owing to the 
presence of the barriers. Hence we may state that the con-
siderable absorption of the mono-energy phonons is of the 
“recombination type”. 

 
6.2 Derivation of an expression corresponding  to  
      the “further NMR” 
 
Let us consider an electron with an initial energy E1 

(Fig. 3).  It can tunnel with this energy through a parabolic 
barrier with a probability p1. When a phonon with the 

energy ∆E = E2 - E1 is absorbed, the electron is excited on 
the energy level E2. The greater tunneling probability in 
the low-mobility sub-band (below the top of the barriers) 
causes an enhancement of the electron mobility and then 
also of the electrical conductivity. Formally it implies an 
enhancement of the value of σ00 in expression (4) from the 
initial value σ00 to the value σ´

oo > σoo. 
With the usual MNR (not with the “further NMR”), 

the formula for the conductivity reads 
 
 σ ~ σoo exp(W/kTo) exp(-W/kT)  (46) 

 
When phonons are absorbed, the value of the electron 
mobility becomes higher, and the formula for the electrical 
conductivity should read 

 σ´ ~ σ´oo exp(W/kTo) exp(-W/kT)  (47) 
 

with σ´
 >  σ.  We will show that 

 
 [ ]EAf ∆=′ exp0000 σσ   (48) 

Or 
 

 EfA ∆+=′ 0000 lnln σσ   (49) 
 

where f is a constant, A-constant characterizing the para-
bolic barrier, and ∆E is the energy of the absorbed phonon.     
It follows from relations (12, 20b) that 
 

 ∆E = 2ε1kTo= 2ε1EMN  (50) 
 

where EMN = kTo is the Meyer-Neldel energy. From rela-
tions (49, 50), we obtain the formulas 
 

 MNEAf 10000 2lnln εσσ +=′  (51) 
 

or, if we employ the denotation p = lnσoo,  q = 2Afε1  
 

 MNqEp +=′00lnσ  (52) 
 
This formula is identical with the mathematical expression 
of the “further MNR” (6). 
 
  6.3  Derivation of the auxiliary relation (48) 
         Tunneling through the parabolic potential        
         energy barrier 
 

In the case of a parabolic barrier (Fig. 3), the dependence 
of the potential energy W(x) of an electron on its position can 
be expressed as 

 
 oWaxxW +−= 2)(   (53) 

 
where Wo  is the height of the barrier measured from the 
bottom of the conduction band and a is the "narrowness" 
of the barrier. If W(x) is inserted into the semi-classical 
formula for the tunnelling probability of a particle, one 
obtains [32-40] 
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 )(exp~)( WAp ∆−ε  (54) 
Where 
 

 
a
mA 2

h

π
−= ,       ε−=∆ oWW   (55) 

and m  is the mass of the tunnelling electron. The quantity 
ε is the energy of the tunnelling particle measured with 
respect to the bottom of the conduction band (Fig. 3).  

If the average energy of electrons is increased – as we 
can suppose - proportionaly to the ∆E (by  f∆E,  f is 
a constant), the value of the parameter ∆W decreases to the 
value ∆W – f∆E. The tunneling probability is changed 
from the value p top the value p': 

 
 ( )WAp ∆−exp~   (56) 

 
 ( )[ ]EfWAp ∆−∆−′ exp~   (57) 

 
The change of the mobility of carriers 
The change of the tunneling probability means that 

correspondingly the mobility of the carriers is changed 
from µ to µ ′  

 
p
p′

=
′

=
′

µ
µ

σ
σ

00

00   (58) 

so that 
 ( )WA∆−exp~µ   (59) 
 ( )[ ] [ ]EAfEfWA ∆=∆−∆−′ expexp~ µµ   (60) 

 
It follows from relations (56-58) that 
 

 [ ]EAf ∆=′ exp0000 σσ   (61) 
 

This expression is identical with expression (48). 
Thus, we may state that relation (52), corresponding to the 
“further MNR”, has been proved. 

 
Remarks: The MNR in modern era 
Pichon et al. [69] have reported an interesting tech-

nological application of the  MNR. According to their 
analysis, the Meyer-Neldel effect in the sub-threshold 
region of thin-film transistor active layer could be a diag-
nostic tool to quantify the quality of the active layer. The 
implication of fhe Meyer-Neldel behavior for oxidizing 
gas detection in phthalocyanine thin films was proposed 
by Goldie [70]. Widenhorn et al. [17] have explained the 
temperature dependence of the forward current of a silicon 
diode in terms of the MNR. They have demonstrated that a 
real diode follows the MNR. It is shown that MNR is due 
to a shift of the current from ideal-diode to a high-
injection-diode behavior. 

Takechi et al. [71] suggested that an exponential tail-
state distribution  model combined with the MNR can be 
used to describe the sub-threshold characteristics of 
amorphous InGaZn04 thin-film transistors (a-IGZO TFTs). 

Most recently Ielmimi et al. [72] reported that the 
structural relaxation and crystallization in phase-change 
memory (PCM) devices could be interpreted by the MNR 

allowing for: (a) the development of a new temperature 
dependent analytical model for the structural relaxation 
and (b) a unified interpretation of the structural relaxation 
and crystallization, with a physical ínterpretation of the 
pre-exponential Arrhenius time by many-phonon thermal 
excitation. Similarly, Savransky and Yelon [73] reported 
the interpretation and consequences of the MNR for con-
ductívity of a large number of memory cells of a GeSbTe 
phase-change memory alloy. 

Okamoto et al. [74] derive universal MNR in the reci-
procal temperature domain on the basis of the Laplace 
transform representation of thermally activated quantities, 
by a mathematical analogy with the generalized Kramers-
Kronig relations in an adequate frequency interval. If the 
MNR bears universality, it should originate from certain 
mathematical grounds, similarly as the Kramers-Kronig 
relations link the real and imaginary parts of the complex 
susceptibility. Okamoto et al. tried to pursue the genera-
lized MN relations in terms of the Laplace transform. They 
demonstrated that it appears in the limited temperature 
region specific to each physical system, when some realis-
tic conditions are guaranteed.   

NOTE: In review [41] the new observations in MNR 
are discussed in case of chalcogenide glasses. 

 
 
7.  Relation between MNR and relaxation 
 
The Meyer-Neldel rule gives relations between physi-

cal quantities in steady states. In our case, this refers to the 
electric conductivity of a non-crystalline semiconductor 
(namely to its pre-exponential factor) and the value of the 
activation energy. On the other side, a non-exponential 
(stretched exponential) function describes the behavior of 
a non-stationary relaxation process. Despite that difference 
in their nature there is a well-defined relation between 
these phenomena. 

Our goal is to suggest a sight on both phenomena. 
This attempt will also support the work [58], namely the 
“diffusive model” described there. 

 
7.1  Diffusive model of relaxation 
 
In work [58] a relaxation process in 2-D system (at 

surface recombination) has been studied by computer 
methods proceeding after an initial optical impulse activa-
tion of current carriers. The initial concentration of carriers 
before the impulse was considered as zero, and closely 
after the optical impulse application, the concentration was 
considered as a positive constant everywhere on the ob-
served area of the surface. The initial distribution of carri-
ers has been modeled by the method of “random shoot-
ing”. 

The above described model assumes the following: 
Both types of carriers (e and h) execute chaotic Brow-

nian motion in disordered materials. This motion is simu-
lated by computer means. 

Further, it is assumed that the recombination pair e-h 
has a non-zero probability to recombine only if an electron 
undergoing the Brownian motion approaches a hole at a 
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sufficiently small distance (smaller than ro). The circle of 
radius ro represents in the planar case a recombination 
region. One can imagine that such a relaxation circular 
area exists around each hole. 

Probability P of the electron recombination per 
second is the same everywhere inside the circular area.  

Computer simulation showed [58] that the relaxation 
had at first an exponential and later achieved a non-
exponential (stretched exponential) behavior. The transi-
tion from the exponential to the stretched relaxation ap-
pears after a certain time, which depends on several para-
meters. The authors have investigated the influence of 
single parameters of the model on the relaxation process. 
In the modeling they have varied the radius ro, the recom-
bination probability P of the pair, and characteristics of the 
Brownian motion under consideration. 

It seems to us that the model presented in [58] 
represents a plausible simplified view on relaxation 
processes in disordered semiconductors. Subsequently we 
intend to modify it. We do intend to submit an integrated 
(more complex) model, which should be able to explain 
not only relaxation but also MNR. The model that we want 
to elaborate will agree with our early published concept of 
the MNR based on the barrier-cluster model (BCM) of a 
non-crystalline semiconductor. The BCM has been pre-
sented in [29-40, 75-79]. 

 
7.2  Integrated MNR-R model 
 
The integrated MNR-R (Meyer-Neldel rule – relaxa-

tion) model arose by the synthesis of two approaches: our 
MNR model [29-32] and relaxation model (published in 
[58]). Contrary to the original relaxation model, it takes 
some new important facts into consideration: 

a) The integrated model postulates a dependence of 
the recombination probability P (close free carriers e-h) on 
activation energy W by the same way as it follows from 
our MNR model. This probability is proportional to exp(- 
bW ) according to relation (11)  

 
P  ~ exp(-bW) 

 
b) The integrated model (contrary to the original one) 
permits also to study phenomena at which are simulta-
neously effective both, thermal and optical excitation. 
These phenomena are either of steady as non-steady type. 
This enables to model also processes connected with 
MNR. 
c) The integrated model takes into consideration a depen-
dence of the recombination probability P on the radius 
range in accordance with the relation (25). This way ex-
plains the essence of the “inverse MNR” phenomenon. 
d) Contradictory to the original 2D relaxation model, the 
integrated model has generally a 3D character. The re-
combination regions are not circular surfaces but spheres 
of radius ro. 
e) “The further MNR” phenomenon can also be included 
into the integrated model. This is connected with an in-
crease of the mean mobility of free carriers, caused by 
absorption of mono-energetic phonons produced at recom-

bination. This leads to an increase of the electric conduc-
tivity.  
 

7.3 The relaxation from point of view of  the  inte 
      grated model 
 
If a certain concentration of carriers (constant in the 

whole volume of a semiconductor) is excited by an optical 
pulse, then in the first phase of relaxation will be always 
dominate the recombination of the carriers which have 
been created directly inside recombination regions. This 
first stage of the relaxation development will always have 
an exponential course. An expressive recombination will 
become observed at high free carrier concentrations, when 
majority free electrons will occur in the recombination 
regions. This stage of the process will have a short dura-
tion at low concentrations. Soon after the beginning of the 
relaxation a carrier deficit will appear. The diffusive 
(Brownian) flow of carriers into those regions from their 
neighborhood will slow down. The phase of non-
exponential relaxation begins. 
Validity of relations (14, 15) ergo (thus) relations 
 

  (dn/dt)gen =  C1exp(-W/kT  (62) 
 

 (dn/dt) recom = n.C2 exp(-bW)  (63) 
 

leads at the stationary state to relations (3,4), which ex-
press the MNR. From (63) it follows that a relaxation 
process in a semiconductor will have an exponential 
course 

 ( ) ( )Ctntn −= exp0  (64) 
 

where C is a constant. Such a case is in principle occurs 
when certain conditions are fulfilled. Very often non-
exponential relaxations are observed. Our relations (62, 
63) such eventuality do not offer. How can this discrepan-
cy be explained? 

Two recombination variants are hidden here. The rela-
tion (63) corresponds to a mono-molecular recombination. 
Everything indicates that this sort of recombination domi-
nates at high free carrier concentrations in a semiconduc-
tor. It justifies the assumption that nearby e-h pairs are 
created. 

 
 
7.4 Two types of the relation between NMR  
       and R 
 
The type of the recombination (whether it is single- or 

bi-molecular) depends on the dominant factor determining 
the rate of the recombination. If the main hurdle of the 
recombination process is the Brownian diffusion (which 
enables the production of near e-h pairs), then the recom-
bination process is bi-molecular. If the main reason of why 
the rate of the recombination is limited is a small probabil-
ity P for the recombination of electrons with near holes, 
then the recombination is single-molecular. The deficit dn 
of e-h pairs due to their recombination is proportional to 
the number n of the pairs. This is a consequence of a con-
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stant probability P for each pair. When all (or almost all) 
carriers are to be paired, an exponential character of the 
relaxation follows. 

It should be emphasized that the relation between the 
NMR and R is markedly different with low and high con-
centrations of the carriers in disordered semiconductors. If 
the carrier concentration is sufficiently high (from the 
viewpoint of the integrated model), the preponderant ma-
jority of free electrons are in recombination regions. The 
recombination is single-molecular and relations (62, 63) 
hold. The validity of the MNR is connected with an expo-
nential relaxation process. The electrical conductance of 
the sample is proportional to the total number of the free 
electrons in the whole volume of the sample. However, the 
number of recombination events is proportional to the 
number of electrons finding themselves in the recombina-
tion regions. 

If the recombination region penetrates almost the 
whole volume of the sample, the calculations under con-
siderations will be approximately the same. The relaxation 
of the electrical conductivity will be exponential and the 
NMR will hold for it. When the concentration decreases 
during the relaxation, the character of the relaxation be-
comes changed from the exponential to a non-exponential 
one. Simultaneously the validity of the NMR ceases to 
hold, or one may say, its validity is restricted to some 
relatively narrow interval of the electrical conductivity. 

 
7.5 Analytical approximation of the nonexponen 
       tial relaxation and MNR 

 
At lower carrier concentrations the recombination 

possesses a bi-molecular character. In this case, relation 
(63) can be replaced by the relation 

 
  (dn/dt) recom  = n2.C2 exp(- bW)  (65) 

 
The production of neighbouring pairs by the mechanism of 
Brownian motion will be at low electron concentrations 
approximately proportional to the product n1.n2 = n2 where 
n1 = n2 = n is electron (hole) concentration. This is so 
despite that the intrinsic carrier the character of the recom-
bination in the recombination regions alone is mono-
molecular.  
Solely from a mathematical viewpoint, two equations 
suggest when the MNR rule is valid and simultaneously, 
when the relaxation possesses a non-exponential character. 
They read 
 

  (dn/dt)gen  =  C1exp(-2W/kT)        (66) 
 

  (dn/dt) recom  = n2.C2 exp(- bW)        (65) 
 

In the stationary case, these equations give the normal-
MNR 

 σ = σoo.exp(b´W) exp(-W/kT)  (18b) 
or  

 σo ≈ σoo exp(b´W) = σoo exp(0.5 bW) (20b) 
 

so that relations of type (3, 4) are still valid in this case. 
Consequently, the previous considerations - concerning 
inverse MNR and further MNR – maintain their validity. 

From (66) it follows that after a certain initial carrier 
excitation, 

 

0

1
1

n
Kt

n
+

=
 (67) 

 
where n(t = 0) = no and K is a constant. The obtained rela-
tion (67) does not describe the stretched exponential 
course but the non-exponential course similar to it in many 
respects (sufficiently large t). The difference of this course 
from the stretched exponential one, which is observed in 
the modelling according to the work [58], should consist 
most likely in details the influence of the Brownian mo-
tion. Relation (65) does not include all details of the 
Brownian motion. Probably this is the cause of why the 
relaxation process resembles only in a limited sense the 
stretched exponential one. 
 
 

8.  Discussion 
 
We suppose that the best approach, leading to the un-

derstanding of the relation between the MNR and relaxa-
tion, is one which is given by the integrated MNR-R mod-
el. This model, instead of analytical results, gives only 
numerical ones, and this is disadvantageous. The best 
feature of the integrated model is that it expresses details 
connected with the Brownian motion of particles. We 
suppose that just as a result of the Brownian motion of 
particles, the relaxation possesses frequently exhibit a 
stretched exponential course. (It is in agreement with 
[58].) 

With the modeling according to the integrated MNR-
R model, no input information is given concerning the 
type of recombination. However, the type of the thermal 
generation has to be given. Then a problem arises, because 
we have two different relations for the thermal carrier 
generation at the mono-molecular and bi-molecular me-
chanism of the recombination. It is a dilemma that we are 
unable to answer yet.  

The application of two different formulations 
represents the only possibility how to avoid a paradox to 
which another way of thought could lead. For the moment, 
it seems to be possible to solve the problem separately – 
first for one concentration region and then for another – as 
these come out from the integrated model. In an interval of 
low carrier concentrations, the recombination seems to be 
bi-molecular.  

In a case of low concentrations - in agreement with re-
lation (65, 66) - the validity of the MNR is unequivocally 
accompanied by a non-exponential type of relaxation in a 
broad interval (several orders) of values of the electric 
conductivity. It appears that the majority of published 
works deal just with this second case. 

On the other side, relation (62) is here replaced by re-
lation (66) for the thermal excitation of free carriers. The 
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question arises: Is such an expression of a thermal excita-
tion in disordered materials acceptable?  

We point out: the concept of phonons in disordered 
semiconductors is always open. We leave this question 
open. This is a subject for discussion. The integrated mod-
el suggests means for testing this problem. The model 
includes processes which we are not able to describe in a 
form of equations. These processes we can quantitatively 
describe by using numerical modeling methods. Such 
modeling does not offer an analytical expression, which is 
considerable disadvantage. Then one relies on compromis-
es.    

It is to be stressed that in integrated model the type of 
the recombination is neither given nor postulated. It results 
from mechanism of model alone. 

The relations (65, 66) offer an explanation of MNR 
and of the non-exponential relaxation in large intervals of 
temperatures and activation energies. This agrees with 
reality. Relation (66) is valid also when modeling is im-
plemented in frame of the integrated model. This model 
may become what enables a good understanding of 
processes in disordered materials. Non-exponential relaxa-
tion due to Brownian motion according to the relation (67) 
perhaps can be modified into the expression of stretched 
exponential form.    

 
9.  Conclusion 
 
This paper offers a reader several views concerning 

relation between MNR and relaxation in disordered semi-
conductors.  We have made an attempt to create a unified 
view on two significant and characteristic phenomena 
observed in disordered semiconductors. We bear in mind 
the clarification of the essence of the Meyer-Neldel rule 
and inquire the relaxation in disordered semiconductors. 

      The starting point of the present consideration is 
the model MNR described in preceding works by author 
and also the diffusive model of relaxation reported in work 
[58]. The two views presented above are unified in the 
suggested integrated MNR-R model. In this work essential 
features of this model are described. On the ground of this 
model it will be possible by the use of numerical methods 
to model both stationary and non-stationary processes in 
disordered semiconductors under conditions of optical and 
thermal excitation of current carriers. At the moment the 
model is subjected to a futher elaboration. Results ob-
tained will be published in the next author’s works. Of 
course, many questions remain still open.  
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